人工智能无处不在
利用前沿技术推动业务扩张
生成式人工智能(GenAI)如今已成为关注焦点,但其实这只是人工智能全面发展的一个方面。它所证明的一点是--人工智能的使用人群和影响人群比想象中要大得多。这种全民化的趋势引发了实验和投资热潮,其中不仅包括研究智能手机的替代品,还有许多初创公司正致力于研发下一代ChatGPT。
这一切对企业的日常工作意味着什么,目前还存在许多未知。我们坚信,人工智能已经并将持续对数字化企业的某些关键流程产生重大影响,尤其是软件开发,它能够帮助企业更快制造产品并将其推向市场。
需要注意的是,尽管人工智能目前的发展非常振奋人心,在持续变革方而还是存在一些犁肘的。重量级的商用大语言模型(LLM)功能强大,但至少在目前,对于大多数企业而言,其成本普遍过高,很难大规模投入使用。与之对应的,当下风头正劲的 ChatGPT 可能会成为“一把四处乱敲的锤子”,企业争先恐后地将其整合到自己的流程中,而实际上它可能并非必要,或不是合适的工具。
人工智能似乎每天都有新的突破,然而在采用这些突破性技术之前,企业需做好一些基本的准备工作。正如我们在数据平台视角中提到的,其中一项准备是要制定健全的数据战略,确保随时提供相关、可信和可追溯的基础数据,供人工智能模型使用。如果没有做到这点,人工智能解决方案可能只会让企业加快做出错误的决策。
此外,在使用生成式人工智能等工具时,需对自己想要实现的“好”结果有一个基本概念。虽然可以对这些工具加以引导,但却不能任其在没有监督的情况下工作,也不能把对结果质量的评估交给工具去执行。掌控人工智能系统的方向和输出属于负责任技术的实践之一,也是避免意外后果的关键。
-旦掌挥相关参数,我们鼓励企业结合运营期间可能出现的用例,APP开发资讯对人工智能进行测试。与其他所有创新一样,在技术真正发挥作用之前,我们很难了解其全部潜力和应用范围。
预兆信号
"企业纷纷发现新的人工智能应用场景。通常是在让人意想不到的领域。例如,麦肯锡咨询公司(McKinsey)研发了一款聊天机器人,引起了人们的关注,该机器人既是多功能助理,同时又可以与使用者进行沟通交流,可以根据员工的查询浏览公司庞大的文件库和访谈记录,并从中提炼重点,为员工工作提供具体支持。
大语言模型逐渐掌握业务行话。越来越多为特定行业或用例研发的大语言模型正在涌现出来,这些行业或用例都有各自的术语,通常是技术性很强的词汇。这方面的示例包括:彭博社(Bloomberg)的BloombereGPT专门针对金融数据集进行了训练,以协助完成常见的金融服务行业任务,如命名实体识别和新闻分类;谷歌的 MedPalm,用于为常见的消费者健康问题提供准确而全面的答案,其知识储备已经被证实足以通过美国医疗执照考试。
人工智能成为投资新战场。全球最知名的几家企业正在向人工智能领域投入大量资金和资源,试图在这个飞速发展的领域获得竞争优势,其规模之大令人咋舌。微软今年年初向ChatGPT制造商 OpenAl投资数十亿美元,紧随其后,亚马逊向初创公司Anthropic投资 40 亿美元。高盛公司(Goldman Sachs)预计,该领域的投资总额到 2025 年将接近 2000 亿美元,甚至在人工智能开始真正提高生产力之前就能达到此金额。
人工智能相关股票一路高歌猛进。英伟达公司(NVIDIA)是人工智能系统芯片的领先制造商,其股票涨幅超过 200%,令人瞠目,不过这只是冰山一角。随着分析师和投资者对人工智能行业的关注度倍增,人工智能应用开发商 C3.ai等知名度较低的公司以及 BOTZ 等专注于人工智能的交易所交易基金(ETF)也实现了股价飙升。
免责声明:我们尊重知识产权、数据隐私,只做内容的收集、整理及分享,报告内容来源于网络,报告版权归原撰写发布机构所有,通过公开合法渠道获得,如涉及侵权,请及时联系我们删除,如对报告内容存疑,请与撰写、发布机构联系
发布于:广东省